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Detecting determinism in short time series using a quantified averaged
false nearest neighbors approach
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We propose a criterion to detect determinism in short time series. This criterion is based on the estimation
of the parameter E, defined by the averaged false neighbors method for analyzing time series [Cao, Physica D
110, 43 (1997)]. Using surrogate data testing with several chaotic and stochastic simulated time series, we
show that the variation coefficient of E, over a few values of the embedding dimension d defines a suitable
statistic to detect determinism in short data sequences. This result holds for a time series generated by a
high-dimensional chaotic system such as the Mackey-Glass one. Different decreasing lengths of the time series
are included in the numerical experiments for both synthetic and real-world data. We also investigate the
robustness of the criterion in the case of deterministic time series corrupted by additive noise.
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I. INTRODUCTION

During the two last decades, nonlinear determinism has
become a powerful paradigm for the analysis of many dy-
namical behaviors in different research fields from biology to
optics. In this framework, one of the most investigated as-
pects is nonlinear time series analysis and detection of deter-
minism in irregular and complex experimental signals.
Among many different approaches that aim to analyze the
underlying dynamical process of a time series, the phase
space reconstruction (PSR) based ones have been extensively
studied. The concept of PSR was first numerically demon-
strated by Packard et al. [2] and then mathematically proved
by Takens [3]. In the case of deterministic times series, it has
been shown that the PSR technique leads to estimation of the
embedding dimension [4] and dynamical invariants such as
the correlation dimension [5], Lyapunov exponents [6-9], or
different entropy quantities [10-12] (see also [13] and [14]
for an overview of related nonlinear data processing tech-
niques).

More generally, the PSR technique is also the basis of
several approaches to distinguish stochastic time series from
purely deterministic ones. For example, Sugihara and May
[15] proposed to use short-term prediction techniques to de-
tect determinism. A similar approach, based on the estima-
tion of the nonlinear prediction error, was used by Tsonis and
Elsener [16] to identify chaotic behaviors. Kennel and Isa-
belle [17] also used a nonlinear prediction criterion by com-
paring the given data to an ensemble of random control data
sets.

Other methods used to distinguish chaos from noise are
based on the observation that the reconstructed trajectories
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generated by an underlying chaotic dynamical systems are
smooth and differentiable. This is not the case for signals
produced by stochastic processes. Following this idea, Ka-
plan and Glass [18] proposed to measure the average direc-
tional vectors in a coarse-grained d-dimensional embedding
of the time series. The algorithm seems to be efficient for
short time series (655 points) in the case of low-dimensional
chaotic time series. One year later, Wayland ez al. [19] pro-
posed a computationally efficient variant of the Kaplan-Glass
method. The shortest simulated time series were 1024 points
in length. This method requires arbitrary choices of input
parameters, such as the number of nearest neighbors and the
number of random centers. No output parameter is defined
by this method in order to achieve statistical tests. However,
the results of the method were qualitatively and successfully
compared to those of the amplitude-adjusted Fourier trans-
form (AAFT) surrogate time series using the approach of
Theiler et al. [20]. Salvino and Cawley [21] also exploited
the continuity criterion and defined a smoothness detector to
test the determinism of a time series. The authors validated
their method on simulated data obtained from the Hénon,
Lorenz, and Rossler attractors. The algorithm was applied to
time series of lengths 20 000, 3000, and 500 points. The
AAFT surrogate data testing method [20] was adapted and
performed to assess the validity of the criterion but no sto-
chastic time series were included in the numerical experi-
ments. In this approach, and similarly to the Kaplan-Glass
one, the criterion depends on an arbitrary choice of the em-
bedding dimension and the PSR lag time is used as a variable
input parameter. The choice of the number and size of the
coarser grid boxes used is also arbitrary. In addition, the
method is dependent on the vector field used to define the
proposed statistic. A modified version of this algorithm was
proposed by Jeong er al. [22] to investigate the dynamics of
long recorded electroencephalogram time series. Ortega and
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Louis [23,24] proposed another approach also based on the
smoothness principle. Note that the statistic used in these
papers is dependent on the chosen embedding dimension for
the PSR. Another important input parameter is the ball radius
used to estimate the density defined by the time series in the
reconstructed phase space. A similar method was later ap-
plied to detect determinism in high-dimensional systems
[25].

Jeong et al. [26,27] proposed another approach also based
on the smoothness that characterizes the reconstructed trajec-
tories of deterministic systems. The method is based on the
computation of the angles between two successive tangent
vectors in the PSR trajectory as a function of time (see Fig.
1). A statistic [the central tendency measure (CTM)] is also
derived to distinguish purely deterministic time series from
random ones. Moreover, an improved version of the AAFT
surrogates was used to perform statistical tests (with 20 sur-
rogates generated for each tested time series). Such surro-
gates are called iteratively refined AAFT (IAAFT) surrogates
and were introduced by Schreiber and Schmitz [28]. In these
papers, the authors focused on short time series (2000 point
length for the simulated ones and at least an average of 1525
for the experimental ones). From a purely methodological
point of view, we can point out that this method applies for
data satisfying a weak stationarity condition. In addition, the
embedding parameters (the dimension and lag time of the
PSR procedure) are needed to estimate the CTM statistic.
The authors used parametric #-tests to achieve a statistical
comparison between the original CTM’s and those of the
surrogate data. Generally, nonparametric tests are recom-
mended for such data-processing techniques [13,20,29] as
the Gaussian assumption for the distribution of the tested
statistic does not always hold.

One can also find in the literature alternative methods for
detecting determinism that are not based on the smoothness
principle [30-32]. All these approaches were validated on
relatively short time series (with 1000 to 2000 samples) and
generally require several input parameters.

A different approach for detecting determinism is the so-
called global false nearest neighbors (FNN) one [4]. This
method was designed to determine a correct embedding di-
mension which allows the reconstruction of the possible at-
tractor of the system. In this approach, a criterion to deter-
mine the percentage of false neighbors is defined for a given
time-delay vector obtained for different embedding dimen-
sions. If the embedding dimension is too low, this percentage
is increased due to the geometrical projection phenomenon.
When the percentage is computed for different embedding
dimensions, it decreases continuously and a minimum value
(close to zero) is reached, which means that the dimension is
large enough to describe the dynamics. In the case of a sto-
chastic process, the theoretical percentage of false neighbors
does not decrease continuously as the embedding is in-
creased. It has an irregular behavior. Unfortunately and even
though some recommendations are given in [4,14], the FNN
algorithm uses a subjective parameter, namely, the threshold
R,,; that defines whether the neighbor of a given time delay
vector is false or not. The classical threshold choice ranges
from 5 to 20. Figure 2 shows an example of the application
of the FNN method to a 1000-sample time series generated
by the Ikeda map.
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FIG. 1. Cosine values of the angles between successive tangent
vectors obtained from a PSR performed on a 1000-point Lorenz
time series (upper frame). The embedding dimension is set to 7 and
the lag time is 4. A similar figure obtained for an iteratively refined
surrogate of the same time series is shown in the lower frame. In
this case, the CTM for the original time series is 0.0053. The sur-
rogate CTM is 0.1071. The CTM quantifies the irregularity of the
cosine fluctuations. The smoothness of the Lorenz system implies
cosine values that are close to 1 with very weak irregularity. The
surrogate procedure adds a random component which creates im-
portant fluctuations of the cosine values.

Some authors [33-38] analyzed the FNN algorithm or
proposed more sophisticated variants of the method to inves-
tigate the deterministic nature of time series corrupted by
noise but did not really solve the threshold problem. Hegger
and Kantz [39] published a very interesting paper in which
they proposed an improvement of the FNN method. The
threshold issue is addressed. Unlike what is done in most
applications of the method, the authors suggest to explore the
behavior of the algorithm with different values of the thresh-
old. They also pointed out that the minimal reasonable
threshold is given by the maximum of the local deterministic
expansion rate, which can be much larger than the expansion
factor e™max (where \,,,, is the largest Lyapunov exponent
and 7 the lag time of the PSR). This aspect of the algorithm
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FIG. 2. Percentage of FNN’s as a function of the embedding
dimension d obtained with a 1000-point Ikeda time series. The
choice of the threshold R,,, has an important influence on the be-
havior of the method.

is still under discussion. In addition, the authors showed in
this paper that the FNN algorithm has to be combined with
surrogate data tests (based on IAAFT surrogates) in order to
ensure a correct distinction between low-dimensional chaotic
data and noise.

To avoid this subjective choice of the threshold, Cao pro-
posed a modified algorithm [1] sometimes called the aver-
aged false neighbors (AFN) method. Cao’s approach is based
on the estimation of two parameters E; and E, which are
basically derived from quantities that are defined by the FNN
method. These parameters are computed for different in-
creased values of the embedding dimension d. Then the glo-
bal behaviors of E| and E, as functions of d are respectively
used to estimate the minimum embedding dimension and to
determine the nature (stochastic vs deterministic) of the un-
derlying dynamical process generating the time series. This
method has many advantages: it does not need too long time
series (in the original paper [1] it was applied to a 1000-point
time series), it is computationally efficient, and some of its
features are not very sensitive to noise [40]. Moreover, it is
not based on any arbitrary choice of a threshold. It requires
only the determination of the time delay (or lag time) of the
PSR procedure, which can be estimated reliably using the
average mutual information (AMI) approach [41]. In [38],
the E, parameter was analyzed to improve the efficiency of
the AFN method for the estimation of the minimum embed-
ding dimension of low-dimensional chaotic attractors (Lo-
renz and Rossler) in the presence of additive white uniform
and Gaussian noises. In this paper, the simulated time series
were 30 000 points in length.

The main disadvantage of the AFN method is that it is
based on the observation of the curves defined by E,(d) and
E,(d), which is somewhat subjective. Therefore, the algo-
rithm has no quantified output that can be used in a compara-
tive manner or to establish a statistical test in order to detect
determinism in a time series.
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In the present work, we will focus on the parameter E,
used as an indicator of the nature of the underlying dynami-
cal system. Its qualitative variations as function of the em-
bedding d have been shown [1,40] to be able to distinguish
random behaviors from purely deterministic ones. After
computing the value of E,(d) for some values of d, we pro-
pose to derive a simple statistical parameter, namely, a varia-
tion coefficient VE,- Using an IAAFT surrogate data-testing
approach [20,28,29], we show that this parameter defines a
suitable criterion to distinguish stochastic time series from
deterministic ones. The numerical experiments are per-
formed on several simulated chaotic data (from the Hénon,
Ikeda, Lorenz, and Rdéssler attractors and the Santa Fe com-
petition experimental laser time series) and stochastic time
series (white Gaussian noise and colored noises). Moreover,
the effect of data length is investigated by decreasing the
number of available samples from 1000 down to 250. The
robustness of the criterion is tested for purely deterministic
time series corrupted by an increasing level of additive noise.
Then, we investigate the behavior of the Vi, statistic for a
high-dimensional chaotic system: the Mackey-Glass one. Fi-
nally, an experimental human postural sway time series is
included to conclude these numerical experiments.

The next section is devoted to the presentation of the AFN
method and briefly discusses interpretation of its results. Sec-
tion III describes the proposed statistic derived from the pa-
rameter E, in order to achieve a comparison with the IAAFT
surrogate time series. The following section gives the details
of the numerical experimental procedure used to assess the
criterion. Finally, in Sec. V, we discuss the results of the
simulations.

II. THE AFN ALGORITHM

The method is first based on the construction of the time-

delay vectors from the time series xj,X,,...,xy. The
d-dimensional vector is defined by
yild) = (xp X - 7xi+(d—1)‘r) (1)

with i=1,2,...,N—(d—1)7, where 7 is the time delay.
Similarly to the FNN method [4,14] the AFN approach [1]
defines the quantity

Cl(i d) _ ||yi(d+ 1) —y,,<,-,d)(d+ 1)”
T @) = yaga@l

()

where ||.| is the maximum norm and n(i,d) is an integer such
that the d-dimensional time-delay vector y,; 4(d) is the near-
est neighbor of y;(d).

The next step of the AFN method is to define the averaged
quantity

1 N—-dt
E(d) = N—dr > ali,d). (3)
—aT o

The definition of the first parameter E; is then given by
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FIG. 3. AFN parameter E, as a function of the embedding di-
mension obtained with a 1000-point WGN time series (with lag
time 7=1).

E(d+1)
E(d) = Ed) (4)
By increasing the value of d, this first parameter is increased,
and it stops changing when the time series comes from a
deterministic process. If a plateau is observed for d=d,, then
dy is the minimum embedding dimension.
The AFN method also stated a second quantity E, which
is the useful one to distinguish stochastic processes from
purely deterministic ones:

E'(d+1)
Ed)=—7""" 5
»(d) 2@ (5)
with
1 N—-dt
E*(d) = m z |xi+d7'_ xn(i,d)+dr| . (6)

In the original paper it is suggested that theoretically, for
random processes, E, is independent of d and always equal
to 1. Conversely, for purely deterministic time series it can-
not be constant for all d. Figures 3—6 show the variations of
E, against the embedding dimension d for several typical
simulated time series generated by random processes and
chaotic attractors.

III. THE PROPOSED AFN CRITERION FOR DETECTING
DETERMINISM

In the original paper [1], many numerical experiments
were performed and confirmed the expected results for the
parameter E,. Several simulated time series were tested, in-
cluding data obtained from the Hénon, the Ikeda, and the
Lorenz attractors, and also a colored noise data set. However,
the only justification for the expected results was quite intui-
tive (justified by FNN-based logic). In particular, no theoret-
ical analysis was performed for any of the considered dy-
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FIG. 4. AFN parameter E, as a function of the embedding di-
mension obtained with a 1000-point simulated colored noise time
series generated by an autoregressive AR(1) process (defined by
x,=0.95x,_;+ 7,, where 7, are samples of a centered WGN with
unit standard deviation). The lag time is 7=1.

namical processes (purely deterministic or stochastic).

In [40], we investigated the statistical properties of the
parameter E, for a purely random process, namely, a white
Gaussian noise (WGN) process. In this case, we have shown
that, under some reasonable statistical assumptions, it is pos-
sible to derive the two first-order moments of the E’(d)
quantity considered as a random variable which depends on
the embedding dimension d. This theoretical result was con-
firmed by Monte Carlo numerical experiments with 1000
simulated WGN time series. Using some approximations, an
estimation of the expected value and standard deviation of
the parameter E,(d) was then performed. These two statisti-
cal parameters were respectively shown to be asymptotically
equal to 1 and 0.
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FIG. 5. AFN parameter E, as a function of the embedding di-
mension obtained with a 1000-point x-component Ikeda time series
(with lag time 7=1).
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FIG. 6. AFN parameter E, as a function of the embedding di-
mension obtained with a 1000-point x-component Lorenz time se-
ries (with lag time 7=8).

This result and the observation of the behavior of E, as a
function of d naturally led us to propose the estimation of the
relative standard error (the normalized standard deviation or
variation coefficient) of E,(d) over a few values of the em-
bedding parameter as a statistic for detecting determinism in
short time series. Hence, the criterion is simply defined by
the ratio of the standard deviation of E,(d) to its mean over a
fixed d,,,, values of d. We denote it by V.

IV. NUMERICAL EXPERIMENTS

A. General procedure

To assess the efficiency of the criterion, we apply the
method to different simulated time series. In the case of de-
terministic systems (both discrete and continuous), we gen-
erate 10 000-sample time series. For the stochastic processes,
we simulate 1500-point sequences. In both cases, the time
series are then cut into shorter ones of lengths 1000, 500, and
250 points. These shorter sequences are not randomly se-
lected but chosen in order to optimize a certain quantity re-
lated to the surrogate data-testing technique (which is de-
tailed in the next section).

In the case of random time series, Monte Carlo tests are
performed to quantify the robustness of the Ve, criterion.
One hundred realizations of each initial sequence are gener-
ated to estimate the efficiency level of the method.

When not specified, the estimation of VE2 is achieved with
a d,,. value of 9, which is a reasonable choice to detect
possible low-dimensional deterministic behavior. The only
additional parameter needed to perform the test is the time
delay 7 used for the PSR procedure. For the deterministic
time series, we use the first minimum of the AMI function
[41]. For the discrete deterministic and stochastic systems,
we set 7to 1.

B. Surrogate statistical tests

In order to assess the VE, statistic, we adopt the surrogate
data-testing approach introduced by Theiler et al. [20]. In
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this approach (the AAFT-surrogate-based one), the null hy-
pothesis tested is that the underlying temporal dynamics of
the data results from a Gaussian linear stochastic process
(which can be modeled by autoregressive moving average
processes; see [13] for a detailed discussion).

To achieve this, the criterion is estimated for a fixed num-
ber of random time series created from the original data by
introducing a subtle stochastic component. Basically, the fast
Fourier transform (FFT) of the original time series is com-
puted and then a uniformly distributed random number cho-
sen between 0 and 27 is added to the phase of each of the
FFT components to generate a surrogate in the frequency
domain. An inverse FFT is then applied to obtain the surro-
gate time series. The resulting time series have the same
statistical parameters and the same Fourier power spectrum
(and hence the same autocorrelation function according to
the Wiener-Khinchin theorem) as the original data.

More precisely, in the present work, we use improved
surrogates: the so-called iteratively refined surrogates pro-
posed by Schreiber and Schmitz [28,29]. Their method cor-
rects deviations in the spectrum and distribution from the
goal set by the original data. In other words, the surrogate is
filtered toward the correct Fourier amplitudes and rank or-
dered to the correct distribution. Figures 7-9 show three ex-
amples of the simulated time series and their iteratively re-
fined surrogates.

The last step in such a surrogate data testing is to design a
statistical test (see [13] for more details). For our criterion,
the null hypothesis is associated with the case where the
statistic VE, is likely to be drawn from the distribution de-
fined by the parameters Vi, of the surrogates. A natural ap-
proach would be to compute the mean (mVEz) of the Vg,

parameter for all the surrogates and its standard deviation
(ov, ), and then to verify whether the Vj, parameter of the
2

original time series lies in the interval defined by [mVE

2

-2.580y, ,my,_+2.580y, 1 (if the test is a two-sided one and
2 2

for a level of signiﬁcancze a=0.01). However, to perform
such a test the assumption of a Gaussian distribution of the
parameters of the surrogates must be satisfied. For our statis-
tic and at least for the tested time series, it is almost never the
case (the Kolmogorov-Smirnov test failed). Hence, we fol-
low Theiler et al. [20] and Schreiber and Schmitz [29] and
use a simple rank-order test based on the computation of the
100 percentiles of the distribution of the parameters VEzof
the surrogates. In order to reach a level of significance «
=0.01, we generate 2/ a—1=199 surrogates to perform two-
sided tests on our simulated time series. The ‘“‘surrogates”
routine of the TISEAN software package [29,42] was used.
An important point that has to be taken into account when
generating Fourier-based surrogates is the periodicity arti-
facts issue. It has been shown [29,43] that a mismatch be-
tween the beginning and the end of the time series can lead
to important artifacts in the surrogate which can produce
spurious rejections of the null hypothesis. To solve this so-
called end-to-end mismatch problem, Ehlers er al. [44] pro-
posed to extract from the data a subinterval such that the end
points match as closely as possible. In the present work, we
use a systematic approach proposed by Schreiber and
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FIG. 7. A 1000-point length simulated Lorenz time series (upper
frame) and one of its iteratively refined surrogates (lower frame)
obtained by the IAAFT surrogate method.

Schmitz [29]. It is based on the minimization of the average
of two parameters 7, and yy;, which quantify, respec-
tively, the end-point mismatch and the first-derivative mis-
match. For our numerical experiments and to construct the
subsequences described in Sec. IV A, we developed a simple
routine (similar to the TISEAN “end to end” routine [42])
which extracts from each initial simulated dataset a time
series with a specified length (1000, 500, and 250
samples) which satisfies the minimization of the quantity

(1 /2)(7jump+ ’yXlip)'

C. The tested models

In this section, we briefly describe the different simulated
time series used to assess the efficiency of the criterion. The
deterministic data are generated by well known discrete and
continuous chaotic systems. A chaotic laser experimental
time series is also included in the numerical experiments.
Then, some random time series are tested in order to verify
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FIG. 8. A 1000-point length simulated Rossler time series (up-
per frame) and one of its iteratively refined surrogates (lower frame)
obtained by the IAAFT surrogate method.

that the chosen Vi, statistic is not statistically different from
the 199 VEz’s of the surrogates in this case.

1. Deterministic time series

(a) The Hénon time series. The first deterministic time
series presented for these simulations is taken from the
Hénon chaotic map [45] defined by

_ 2
Xp+1 = 1 _a-xn+yn»

Yn+1 =bxn’ (7)

with a=1.4 and b=0.3.

(b) The Ikeda time series. The second chaotic time series
presented for these simulations is the x component of the
discrete Ikeda attractor [46] defined by

X1 =a+ Rlx, cos(r) -y, sin(1)],
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FIG. 9. A 1000-point length simulated colored noise time series
generated by an autoregressive AR(1) process (defined by x,
=0.95x,_;+ 7,, where 7, are samples of a centered WGN series
with unit standard deviation, in the upper frame) and one of its
iteratively refined surrogates (lower frame) obtained by the IAAFT
surrogate method.

Yur1 = RLx, sin(t) +y, cos(1)], (8)

with = ¢—p/(1+xi+yﬁ), and the parameters a=1, R=0.9,
¢=0.4, and p=6.

(c) The Lorenz time series. For the third numerical experi-
ment, we use the x component of the Lorenz attractor [47]
defined by

i=o(y-x),

y=—Xz+px-y,

Z=xy- Bz, 9
with the parameters =10, p=28, and =8/3.
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The system is integrated using a fourth-order Runge-
Kutta algorithm with integration step 0.02 and unit sampling
rate. To get a 10 000-point length dataset, we generate a
15 000-point time series and discard the 5000 first points (to
ensure the vanishing of all transients). The lag time 7 used to
compute the statistic VE, is estimated via the mutual infor-
mation method [41]. We obtain 7=38.

(d) The Rossler time series. In this experiment, we use the
x component of the Rossler attractor [48] defined by

xX=-(y+2),
y=x+ay,

i=b+(x-0)z, (10)

with a=0.2, »=0.2, and ¢=5.7.

In this case, the system is also integrated using a fourth-
order Runge-Kutta algorithm with integration step 0.01 and
sampling rate 20. To ensure the vanishing of all transients,
we also discard the 5000 first points. Using the AMI function
technique, we obtain 7=7.

(e) Laser experimental time series. We use a 10 000-point
length experimental dataset from Santa Fe Institute competi-
tion NHj; laser signal. We have chosen this experimental time
series because of its known complex dynamical behavior.
The laser time series has a Lorenz-like chaotic dynamics
[49]. Details of the recording procedure can be found in [65]
and also in [13]. The AMI method indicated an optimal lag
time 7=2 for the PSR.

2. Stochastic time series

(a) WGN time series. We use data generated by a totally
uncorrelated stochastic process having a centered and nor-
malized Gaussian distribution.

(b) Correlated noise time series. We use data generated by
a simple AR(1) process defined by

x,=0.95x,_, + 7, (11)

where 7, are samples of a centered WGN series with unit
standard deviation.

(c) Random time series with a static nonlinearity. We use
again an AR(1) process but we apply a simple nonlinear
measurement function as suggested in [13]:

x,=0.99%,_, + 7n,, (12)

where 7, are also samples of a centered WGN series with
unit standard deviation. The aim is to test the criterion on a
stochastic time series with a nonlinearity that is not dynami-
cal.

(d) 1/f“ noise time series. We also include numerical ex-
periments performed on these particular stochastic processes
characterized by a power-law-decaying power spectrum.

Among such processes that can be numerically simulated,
we have selected examples of fractional Brownian motion
(FBM) and fractional Gaussian noise (FGN). The FBM’s are
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nonstationary fractal processes [50] and their increments are
called FGN’s. They are characterized by the Hurst exponent
H (0<H<1) which specifies the autocorrelation of the pro-
cesses. The H exponent is theoretically related to the param-
eter « of the 1/f“ power spectrum law: @=2H+1 in the case
of FBM’s (in this case we have 1 <a<3) and a=2H-1 in
the case of FGN’s (which correspond to —1 <a<1). For
FBM'’s, increasing the parameter a smooths the associated
time series.

To generate time series of such processes, we use the
Cholesky decomposition method (see [51] for instance). This
approach is based on the Cholesky decomposition of the co-
variance matrix of the increments of the FBM process
(namely, the associated FGN). Theoretically, it is able to pro-
duce exact discrete realizations of a finite-size FGN. The
FBM time series (having the same H exponent) is then sim-
ply obtained by cumulatively summing the FGN samples.

For our simulations, we select the following cases.

FGN with H=0.75 (a=0.5), which corresponds to a long-
memory process with a high-frequency global spectral be-
havior.

FGN with H=1 (a=1), which corresponds to the famous
1/f or pink noise. This particular stochastic process was used
to model physical phenomena [52]. Its statistical properties
were also observed in physiology (see [53] for instance, and
the references therein).

FBM with H=0.25 (a=1.5), which corresponds to a non-
stationary process with negatively correlated increments.
Such processes are also called antipersistent FBM’s.

FBM with H=0.5 (a=2), which corresponds to the stan-
dard Brownian motion, a nonstationary stochastic Wiener
process first described by Brown [54] and then analyzed by
Einstein [55].

D. Effect of noise

For the deterministic time series, we also investigate the
effect of additive WGN on the results of the method. We add
an increasing amount of noise to a 1000-sample subsequence
obtained by cutting the 10 000-point initial time series gen-
erated by each model [to satisfy the minimization of the
quantity (1/2)("jump+ ¥siip))- Technically, the subsequence is
first centered and normalized by its standard deviation and
then three levels of noise are added. These noises have, re-
spectively, 0.10, 0.30, and 0.50 standard deviations (which
correspond to percentages of the standard deviation of the
original noise-free subsequence). We also performed Monte
Carlo tests using 100 realizations of the added noise time
series for each level.

E. Application to a high-dimensional chaotic system

To investigate the results of the chosen criterion on a
high-dimensional system, we use a time series generated by
the famous Mackey-Glass attractor [56]

ax(t—A)

0= Ty 0 (13)
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FIG. 10. 1250-point length simulated Mackey-Glass time series
(in the upper frame) and one of its iteratively refined surrogates
(lower frame).

with a=0.2, b=0.1, ¢=10.0, and A=100. This equation pro-
duces a high-dimensional chaotic behavior. The information
dimension of the associated attractor can be estimated using
the Kaplan-Yorke formula (see [11] and [57]). It is about 10.

Equation (13) is integrated using a fourth-order Runge-
Kutta algorithm with integration step 0.01. The sequence ob-
tained is down-sampled and cut to discard the transients,
leading to a 2500-point time series. Four subsequences sat-
isfying the end-to-end surrogate mismatch minimization are
then extracted. These subsequences have lengths 750, 1000,
1250, and 1500 samples. The 1250-sample one is shown in
Fig. 10 with one of its surrogates. We compute the Vg, sta-
tistic for the four time series and compare each of them to its
199 surrogate counterparts. The lag time used is 7=1. The
d,,ax value is set to 12.

We also investigate the sensitivity to noise of the Vi
statistic for this high-dimensional system. We use the 1250-
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FIG. 11. Human postural sway time series recorded during quiet
standing on a force platform. The COP trajectory along the antero-
posterior direction is plotted against time.

and 1500-sample subsequences. The procedure is similar to
the one used in the previous subsection. The levels of noise
are lower: 1% and 10% amounts of WGN are used.

F. Application to postural sway data

Here, we test the criterion on a particular human move-
ment signal, namely, the fluctuations of the center of pressure
(COP) measured with a force platform. Such experimental
data are often analyzed using different nonlinear or fractal
analyses [58—62] or methods from mechanical statistics such
as stabilogram diffusion plots [63,64]. The time series used
was obtained from the anteroposterior component of the
COP during the quiet standing of a healthy elderly human
subject. The data were recorded at a sampling rate of 40 Hz
and filtered using a lowpass Butterworth filter (fourth order

PHYSICAL REVIEW E 76, 036204 (2007)

with cutoff frequency 10 Hz). The recording lasted for 51.2 s
so the time series is constituted of 2048 samples. It is shown
in Fig. 11.

We estimate the Vp statistic with a lag time 7=12
(provided by the AMI method) and a maximum embedding
dimension d,,,,=12. We use different subsequences which
minimize the effect of the end-to-end mismatch artifact re-
lated to the surrogate data-testing procedure. Three different
lengths are tested in order to investigate the behavior of the
method for such irregular biological time series.

G. Results

The first results of the method are presented in Tables I
and II. In these tables, the value of the statistic VE2 is given
for each model and time series length. The interval defined
by the minimal and maximal Ve, values obtained with the
199 surrogate time series is also given. When the original
value is lying inside this interval, the two indices of the
percentiles localizing it in the distribution of the surrogate
Ve, statistics are given. In Table II, for the random time
series, we present the results of one single realization of each
process in order to show the global behavior of the algo-
rithm.

In Table III, we show the results of the Monte Carlo simu-
lations obtained with 100 realizations of the stochastic pro-
cesses. For each of the tested models and times series
lengths, we give the rate of successful applications of the
surrogate data tests (those for which we cannot reject the null
hypothesis). The Vg, parameters means and standard devia-
tions over the 100 realizations are given.

In Table IV, we present the noise effect results obtained
for the five deterministic models. The rate of successful sur-
rogate tests is given for each 1000-point time series and for
three levels of noise (10%, 30%, and 50% of the standard
deviation of the clean sequence).

Tables V and VI show, respectively, the results of the
method for the Mackey-Glass system and the rates of suc-

TABLEL Vg, statistics for the different deterministic series and their surrogate counterparts. The statistic is computed for three different
data lengths. The minimal and maximal surrogate values of Vg, are given for each case. When necessary, the indices of the percentiles

surrounding the Vg, statistic of the original time series are reported.

Data length

Model 1000 500 250
Hénon map 0.3597 0.3562 0.3243
Surrogate statistics [Min, Max] [0.0159,0.0589] [0.0156,0.0997] [0.0246,0.1044]
Ikeda map 0.3417 0.2887 0.1933
Surrogate statistics [Min, Max] [0.0151,0.0779] [0.0148,0.0773] [0.0205,0.1102]
Rossler attractor 0.3722 0.3696 0.3030
Surrogate statistics [Min, Max] [0.2134,0.2538] [0.1742,0.2574] [0.1891,0.2790]
Laser data 0.3381 0.3155 0.3391
Surrogate statistics [Min, Max] [0.1375,0.2210] [0.1271,0.2078] [0.1918,0.2739]
Lorenz attractor 0.3192 0.3250 0.2928
Surrogate statistics [Min, Max] [0.2253,0.3002] [0.2363,0.3164] [0.2572,0.3560]
Percentile indices 20-21
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TABLEIL Vg, statistics for the different random time series and their surrogate counterparts. The statistic is computed for three different
data lengths. The minimal and maximal surrogate values of Vi, are given for each case. The indices of the percentiles surrounding the VE,
statistic of the original time series are reported.

Data length

Model 1000 500 250
WGN 0.0216 0.0338 0.0499
Surrogates statistics [Min, Max] [0.0107,0.0523] [0.0180,0.0696] [0.0215,0.1009]
Percentile indices 21-22 34-35 56-57
Correlated noise AR(1) 0.0250 0.0464 0.0599
Surrogates statistics [Min, Max | [0.0116,0.0520] [0.0073,0.0685] [0.0211,0.1150]
Percentile indices 40-41 76717 62-63
Correlated noise AR(1) (nonlinear) 0.0354 0.0481 0.0681
Surrogates statistics [Min, Max ] [0.0139,0.0624] [0.0183,0.0910] [0.0209,0.1450]
Percentile indices 60-61 68-69 32-33
1/f% (FGN with H=0.75) 0.0331 0.0363 0.0409
Surrogates statistics [Min, Max] [0.0119,0.0467] [0.0169,0.0708] [0.0163,0.0973]
Percentile indices 75-76 54-55 18-19

1/f (FGN with H=1) 0.0251 0.0341 0.0736
Surrogate statistics [Min, Max] [0.0132,0.0589] [0.0149,0.0680] [0.0218,0.1059]
Percentile indices 34-35 40-41 89-90
1/f'3 (FBM with H=0.25) 0.0282 0.0421 0.0458
Surrogates statistics [Min, Max] [0.0078,0.0645] [0.0162,0.0846] [0.0249,0.1026]
Percentile indices 49-50 55-56 28-29

1/f* (FBM with H=0.5) 0.0380 0.0503 0.0575
Surrogates statistics [Min, Max ] [0.0126,0.0544] [0.0171,0.0746] [0.0258,0.1041]
Percentile indices 86-87 80-81 40-41

TABLE III. The rates of success of the Monte Carlo tests performed on the different stochastic time series. Three different lengths are
included and 100 realizations are used for each length and each model. The means and standard deviations of the Vg, statistic over these

realizations are also given. Std. dev. indicates standard deviation.

Data length

Model 1000 500 250
WGN 100% 99% 97%
Ve, (mean=std. dev.) 0.0274+0.0072 0.0378+0.0090 0.0520+0.0128
Correlated noise AR(1) 97% 99% 100%
Ve, (mean=std. dev.) 0.0271+£0.0075 0.0382+0.0088 0.0541+0.0136
Correlated noise AR(1) (nonlinear) 97% 97% 100%
VE, (mean=std. dev.) 0.0393+0.0110 0.0540+0.0168 0.0684+0.0178
1/f% (FGN with H=0.75) 97% 98% 97%
VE, (mean=std. dev.) 0.0269+0.0075 0.0386+0.0100 0.0524+0.0158
1/f (FGN with H=1) 100% 98% 97%
Vg, (mean=std. dev.) 0.0270+0.0077 0.0372+0.0108 0.0512+0.0128
1/f'3 (FBM with H=0.25) 100% 100% 100%
VEz(mean:std. dev.) 0.0298+0.0066 0.0381+0.0118 0.0532+0.0142
1/£2 (FBM with H=0.5) 97% 97% 97%
Vg, (mean=std. dev.) 0.0287+0.0073 0.0380+0.0099 0.0514+0.0139
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TABLE IV. The rates of successful tests in detecting the deter-
ministic nature of the underlying dynamical process of simulated
chaotic data corrupted by additive WGN. The Monte Carlo tests
were performed on each deterministic time series using 100 realiza-
tions of noise. The original sequences are 1000 points and three
levels of noise are considered.

PHYSICAL REVIEW E 76, 036204 (2007)

TABLE VI. The rates of successful tests in detecting the deter-
ministic nature of the underlying dynamical process of the Mackey-
Glass data corrupted by additive WGN. The Monte Carlo tests were
performed on each deterministic time series using 100 realizations
of noise. The original sequences are 1250 and 1500 points in length
and two levels of noise are considered.

Noise level

Noise level

Model 10% 30% 50% Model 1% 10%
Hénon map 100% 92% 25% Mackey-Glass attractor (1250 points) 86% 13%
Ikeda map 100% 98% 11% Mackey-Glass attractor (1500 points) 93% 12%
Réssler attractor 100% 44% 9%

Laser data 100% 9% 2% dynamical process is still revealed even for the 250-point
Lorenz attractor 90% 85% 11% length data.

cessful tests for detecting its deterministic structure when
corrupted by additive noise. Table V includes four different
lengths of the time series and Table VI presents the results
for two levels of noise added to 1250- and 1500-point
Mackey-Glass sequences.

The results of the VE, statistic for the COP time series are
given in Table VII. We present parameters that are similar to
those of Table II for three different lengths of the analyzed
time series.

V. DISCUSSION AND CONCLUSION

From Tables I and II, we can first observe that the Vg
statistics of the deterministic time series are always higher
(about ten times) than the values obtained with the stochastic
time series. This is consistent with the AFN algorithm behav-
ior [1,40]. For all the models and all lengths, the surrogate
data testing demonstrates the efficiency of the proposed sta-
tistic except in one case (the 250-point Lorenz dataset).

From Table I, we also observe that the statistical values of
the original simulated deterministic time series decrease glo-
bally as we lower the number of available samples. Con-
versely, the maximal surrogate statistics are increased and
get closer to the original VE, statistics. In this case, and as is
naturally expected, the ability of the criterion to discriminate
the chaotic behavior is weakened by shortening the data
length. Note that this remark does not hold for the laser
experimental time series. In this case, the VE2 values are
more stable but the deterministic nature of the underlying

For the stochastic time series (see Tables II and III), the
original statistics globally decrease when the data length in-
creases. This is consistent with the theoretical result obtained
for a WGN in [40] as the asymptotic standard deviation for
the parameter E,(d) is zero for all embedding dimensions.
Moreover, we also observe in Table II that both surrogate
values defining the [Min, Max] interval are also increased.
From Table III, the results show important rates of successful
surrogate data tests ranging from 97% to 100%. In all these
cases of the Monte Carlo tests, we cannot reject the null
hypothesis that the underlying process is a purely stochastic
one with a level of significance a=0.01. The results also
indicate that shortening the time series up to 250 samples has
no effect on the efficiency of the method. However, note that,
as expected, the variability of the Ve, statistics over the 100
realizations is systematically increased when the number of
available samples is decreased.

The results presented in Table IV globally indicate that
the Vg, statistic is sensitive to additive noise of 30% intensity
or higher. The method performs very well with 10% amount
of added noise but failed frequently in some cases (mainly
for the Rossler and Laser time series) with 30% level of
noise. This sensitivity to noise is not easily detected in the
global behavior of the parameter E,(d) as a function of the
embedding dimension d [40]. As argued in Sec. I, the defi-
nition of a quantified criterion for the AFN method is neces-
sary and the surrogate data tests allow us to perform a robust
test for the noise influence issue. The results of Table IV
show also that the VE, statistic is less sensitive to added noise
in the case of discrete chaotic maps such as the Hénon or
Ikeda ones. The algorithm is still efficient for a 30% level of

TABLE V. The Vg, statistics obtained for the Mackey-Glass simulated dataset and their 199 surrogate
counterparts. The statistic is computed for four different data lengths. The minimal and maximal surrogates
values of Vi, are also given. When necessary, the indices of the percentiles surrounding the VE, statistic of

the original time series are reported.

Model 1500

Data length
1250 1000 750

Mackey-Glass attractor 0.1980
Surrogate statistics [Min, Max]

Percentile indices

0.1988 0.1805 0.1793

[0.1669,0.1883] [0.1600,0.1893] [0.1519,0.1877] [0.1474,0.1824]

90-91 96-97
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TABLE VII. The VE, statistic for the COP time series and its surrogate counterparts. The statistic is
computed for three different data lengths. The minimal and maximal surrogates values of Vg, are given for
each length. The indices of the percentiles surrounding the VE, statistic of the original time series are also

reported.

Data length
COP data 2000 1000 500
COP data VE2 0.2112 0.2244 0.2318
Surrogate statistics [Min, Max] [0.1982,0.2309] [0.1959,0.2467] [0.2091,0.2689]
Percentile indices 36-37 53-54 23-24

noise with more than 90% correct detections of the determin-
istic structure of the time series. For dynamical systems de-
fined by smooth differential equations, the addition of noise
creates high-frequency artifacts which lead to spurious rejec-
tions of the VE, statistical tests. This is probably due to the
intrinsic geometrical nature of the FNN and AFN algorithms,
which are based on the estimation of parameters using the
phase-space reconstruction of the possible attractor generat-
ing the analyzed data.

The results shown in Table V demonstrate the efficiency
of the algorithm for a high-dimensional process. The VE,
statistic is able to distinguish the original time series from its
surrogates (with a level of significance of 0.01) with only
1250 available samples (see Fig. 10). We also observe a
lower absolute value of the Vi, parameter than those ob-
tained for the lower-dimensional chaotic systems (see Table
I). Table VI suggests that the method is more sensitive to
noise in this case. With 1% level of added noise, the method
is able to detect the deterministic nature of the data but the
addition of 10% noise significantly lowers the efficiency of
the algorithm. We also observe an increased rate of success-
ful detections (from 86% to 93%) when we extend the num-
ber of available samples up to 1500 but only in the case of
the 1% level of added noise. Once again, these results bring
to light the advantage of the quantified criterion to assess the
robustness of this AFN-based approach. The purely graphical
original method did not reveal such a sensitivity [40]. This
aspect related to the sensitivity to noise for high-dimensional
systems surely needs to be investigated in a more detailed
manner. The method should be tested for other high-
dimensional dynamics time series (possibly by including
longer sequences). This point will be studied in further re-
search.

Table VII shows that the analyzed COP experimental time
series has a (probably correlated) random structure whatever
the length of the tested subsequence. We observe that the VE,
values are much larger than those of the simulated stochastic
time series. This suggests that a single computation of the
Vg, statistic for the original data (without comparing it to the
surrogate ones) cannot be used to obtain reliable information
on the nature of the underlying process. Moreover, as for the
simulated stochastic time series, the Vp parameter is in-
creased when we decrease the number of available samples.
This result is consistent with the findings of some studies on
similar data [60,63,64] as one of the theoretical models pro-
posed for the description of postural sway time series is an

antipersistent fractional Brownian motion. Some other au-
thors [58,59,61] proposed a high-dimensional deterministic
chaotic or nonlinear structure to describe these fluctuations.
Nevertheless, this interpretation of the COP signal nature
seems to fail when a proper analysis [62] is applied to long
COP time series (12000 points) by estimating correlation
dimensions or largest Lyapunov exponents. However, these
long COP sequences were obtained from oversampled raw
data that were low-pass-filtered afterward. The time scale
issues produced by such a procedure are not easy to solve.
Nevertheless, to our knowledge, there is no rigorous scien-
tific evidence of deterministic chaos in experimental COP
data. We can conclude that the results of our approach are in
agreement with the most common (stochastic) model pro-
posed in the COP dynamics state of the art.

The method proposed in this paper showed interesting
results for short time series, including a high-dimensional
one. From a purely qualitative point of view, it has some
methodological advantages when compared to other ap-
proaches described in the Introduction. For instance, many of
these algorithms [4,21,23,24,26,27,30-32] require input pa-
rameters such as a threshold radius or an accurate minimum
embedding dimension to provide good performance. Some
others are purely graphical [1,19] and do not propose any
quantified output parameter that can be statistically tested.
From a more quantitative point of view, we have compared
our approach to a smoothness-analysis-based method,
namely, the Jeong et al. one [26,27]. This method is designed
for short time series and is computationally very efficient.
The authors have tested their method on 2000-point time
series generated by the Van der Pol, Lorenz, and Rossler
systems, and also by a high-dimensional system constituted
of several coupled well-known nonlinear dynamical systems.
They also used a 1/f noise data to assess their statistic: the
central tendency measure of the cosines of the angles be-
tween successive directional vectors in the reconstructed
phase space (see Sec. I and Fig. 1). This method (combined
with the surrogate data-testing procedure described in Sec.
IV B) showed equivalent results to ours for the stochastic
time series described in Sec. IV C 2. We used Monte Carlo
tests (with 100 realizations of each random simulated
dataset) and globally obtained similar rates of successful
tests for which the null hypothesis of a stochastic underlying
process cannot be rejected. This was done with 250-sample
sequences. The only significant difference between the meth-
ods was related to the AR(1) process with cubic nonlinearity:
the CTM statistic produced a rate of 88% successful tests
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whereas the Vj;, one gave a rate of 100% (see Table III). The
results obtained with the COP time series were consistent
with those of the Vi, parameter. For the Lorenz and Rossler
time series, the CTM statistic also succeeded in detecting the
deterministic dynamics (even with 250-point sequences). In
addition, we tested this approach for the Hénon and Ikeda
simulated time series. Despite the smoothness of the recon-
structed trajectories of these discrete chaotic systems, the
proposed CTM statistic (see Fig. 1) failed to discriminate the
deterministic structure of the underlying process for some
lengths of the considered sequences (250 samples for the
Hénon map and all the lengths for the Ikeda one). For the
Mackey-Glass data, this method also failed even with a
2000-point time series. The CTM statistics of the original
subsequences were never statistically different from their
199 surrogate counterparts. This smoothness-detection-based
method seems to produce spurious results for very irregular
high-dimensional time series generated by delayed ordinary
differential equations such as the Mackey-Glass one. It is
also unable to detect determinism in fast bursting dynamics
data [27] such as the laser set. However, it shows a good
robustness to additive noise in some cases. Indeed, it can be
applied successfully [26] with a 100% level of added white

PHYSICAL REVIEW E 76, 036204 (2007)

noise to a 2000-point time series generated by a continuous
system such as the Lorenz one. Finally, we would like to
underline the fact that the absolute CTM parameter value is
strongly dependent on the choice of the embedding dimen-
sion and the lag time used for the PSR.

As a conclusion, we have presented in this paper a crite-
rion for distinguishing purely deterministic time series from
random ones (including correlated noise). The proposed sta-
tistic is derived from a quantity stated by the AFN method
[1], which is a modified version of the FNN approach [4] for
detecting determinism. Our approach has two main advan-
tages compared to others: it is quite simple to implement and
it is efficient for short datasets such as 250-point length time
series. Its sensitivity to noise is acceptable for many applica-
tions. This computationally efficient method (associated with
the TAAFT surrogate data testing) require only the PSR lag
time as an input parameter.
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